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The thermodynamic instabilities of a binary mixture of sticky hard spheres �SHS� in the modified mean
spherical approximation �mMSA� and the Percus–Yevick �PY� approximation are investigated using an ap-
proach devised by Chen and Forstmann �J. Chem. Phys. 97, 3696 �1992��. This scheme hinges on a diago-
nalization of the matrix of second functional derivatives of the grand canonical potential with respect to the
particle density fluctuations. The zeroes of the smallest eigenvalue and the direction of the relative eigenvector
characterize the instability uniquely. We explicitly compute three different classes of examples. For a sym-
metrical binary mixture, analytical calculations, both for mMSA and for PY, predict that when the strength of
adhesiveness between like particles is smaller than the one between unlike particles, only a pure condensation
spinodal exists; in the opposite regime, a pure demixing spinodal appears at high densities. We then compare
the mMSA and PY results for a mixture where like particles interact as hard spheres �HS� and unlike particles
as SHS, and for a mixture of HS in a SHS fluid. In these cases, even though the mMSA and PY spinodals are
quantitatively and qualitatively very different from each other, we prove that they have the same kind of
instabilities. Finally, we study the mMSA solution for five different mixtures obtained by setting the stickiness
parameters equal to five different functions of the hard sphere diameters. We find that four of the five mixtures
exhibit very different type of instabilities. Our results are expected to provide a further step toward a more
thoughtful application of SHS models to colloidal fluids.
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I. INTRODUCTION

Thermodynamic instabilities are important to locate on
the phase diagram of a fluid system those regions where the
system cannot exist as a single phase.

For a one-component system with Helmholtz free energy
A, pressure P, in a volume V, at a temperature T, the condi-
tion for phase stability is ��2A /�V2�T,N=−��P /�V�T,N

=1/ �V�T��0. The points where the isothermal compressibil-
ity �T diverges define the so called spinodal line, or phase
instability boundary �1�, that separates the stable from the
unstable region of the phase diagram. In the stable region,
where �T�0, the system can exist in a single phase, while
inside the other region the free energy can be lowered by
phase separation into two phases with different densities.
This kind of instability is usually referred to as mechanical
instability, associated with a gas-liquid transition or conden-
sation �1–4�.

In a binary mixture the situation is more complex �1–6�.
The thermodynamic instability is located on the points of the
phase diagram where ��2G /�x2�T,P,N /�T=0, where x is the
concentration of one of the two species, and G is the Gibbs
free energy. The points where �T

−1=0 are instabilities of pure
condensation �and the Bhatia-Thornton �7� density-density
structure factor, S���k�, diverges at k=0�. The points where
��2G /�x2�T,P,N=0 are again instabilities of pure condensation
when �=��v1−v2�= ��V /�x�T,P,N /V diverges �� is the total

number density, vi the partial molar volume, per particle, of
species i. In this case all Bhatia-Thornton structure factors
diverge at k=0� and are instabilities of pure demixing when
�=0 �in this case the Bhatia-Thornton concentration-
concentration structure factor, Sxx�k�, diverges at k=0�. But,
in general �for an asymmetric mixture�, the kind of instabil-
ity may be in between one of pure condensation and one of
pure demixing, with � finite and different from zero �also in
this case all Bhatia-Thornton structure factors diverge at
k=0�. For the particular case of a binary symmetric mixture
the only allowed instabilities are the ones of pure condensa-
tion and of pure demixing, since �=0.

A different route was followed by Chen and Forstmann
�5� to characterize the instability uniquely in terms of an
angle �, function of the density and x.

The purpose of this work is to investigate the nature of
instabilities for a binary mixture of sticky hard spheres
�SHS�. The SHS one-component model was originally pro-
posed by Baxter �8–10�, who showed how it admitted an
analytic solution in the Percus–Yevick �PY� approximation.
The PY solution was later extended to mixtures �11–14� and
it is nowadays regarded as extremely useful in colloidal sys-
tems. In the SHS model one accounts for a very short range
attractive potential by defining an infinitely narrow and deep
square well. This limit is carried out in a suitable way so that
the second virial coefficient is finite. Due to its highly ideal-
ized nature, the one-component SHS model is not free of
pathologies �15�. Nonetheless this model has recently re-
gained considerable attention in studies of colloidal suspen-
sions �16–19� especially in its polydisperse version. Since
the PY solution of a p-component SHS mixture requires the
solution of p�p+1� /2 coupled quadratic equations which are
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hard to solve for high p, attempts have been made to treat the
model with “simpler” approximations �20,21�, which would
allow analytic solution even for polydisperse systems. One
of these approximations, that we will consider in this work,
is the modified mean spherical approximation �mMSA� �22�.

In the present work we apply the Chen and Forstmann
formalism to a binary SHS mixture, using both the mMSA
and the PY approximation. The former can be regarded as
the zero density limit of the latter and, hence, its predictions
must be accepted with care. However, it has its main merit in
the fact that it entitles analytical predictions even in the mul-
ticomponent case, unlike the PY closure.

Three classes of systems will be discussed in details. First
we consider the symmetric mixture, where equal-size
equimolar components interact with variable strength only in
the unlike part. This simplified case was already studied by
Chen and Forstmann for hard core particles with attractive
Yukawa interactions within the reference hypernetted chain
approximation. In this particular SHS case we are able to
perform a full characterization of the mixture both for
mMSA and PY. In a second class we discuss two paradig-
matic cases: �i� A fluid having HS interactions among like
particles and SHS interactions for the unlike �system A� and
�ii� a fluid formed by one SHS species and another HS one
�system B�. For PY both cases have been previously dis-
cussed by Barboy and Tenne �14�, by Penders and Vrij �23�,
and by Regnaut, Amokrane, and Heno �24,25� without, how-
ever, tackling the issue of the stability nature. Even in these
two cases a detailed analytical investigation can be carried
out. Building upon our recent work �26�, we finally discuss a
third class of examples involving a general binary mixture
where, however, the stickiness parameters are related to the
sizes of the particles according to some plausible prescrip-
tions �26�. Within the mMSA, we are then able to discuss the
nature of the instabilities previously calculated in Ref. �26�,
by evaluating numerically the Chen and Forstmann angle �.

The remainder of the paper is organized as follows. In
Sec. II we briefly outline Chen and Forstmann’s approach, in
Sec. III we report the PY and mMSA solutions for the Baxter
factor correlation function of the SHS mixture. Sec. IV is
dedicated to the binary symmetric mixture, whereas Secs. V
is dedicated to systems A and B. Section VI deals with five
binary mixtures obtained setting the stickiness parameters
equal to five different functions of the sphere diameters.

II. METHOD FOR ANALYZING THE INSTABILITY

For the sake of completeness, we briefly recall the main
steps of the method reported in Ref. �5�. In doing this, how-
ever, we shall follow the general density functional formal-
ism outlined in Ref. �27� which yields a clearer viewpoint.

A. The Chen and Forstmann formalism

Consider a binary mixture with N1 particles of species 1
with coordinates r1

1 , . . . ,rN1

1 and N2 particles of species 2
with coordinates r1

2 , . . . ,rN2

2 interacting through spherically
symmetric pair potentials. Define the microscopic densities
to be

�i�r� � �
�=1

Ni

��r − r�
i � i = 1,2 �1�

for each one of the two species.
Consider now the nonhomogeneous system with an exter-

nal potential �1�r� acting on the particles of species 1 and an
external potential �2�r� acting on the particles of species 2.
Let 	i and 
i be the chemical potential and the de Broglie
thermal wavelength, respectively, for species i, N=N1+N2
the total number of particles, and rN= ��r�

1� , �r�
2�� a short-

hand notation for the total set of coordinates. The grand
partition function of the system with total internal energy
W�rN� is a functional of the generalized potentials ui�r�
=��	i−�i�r��

��u1,u2� � �
N1=0




�
N2=0



1


1
3N1N1!

1


2
3N2N2!

�	 e−�W�rN�+�i=1
2 
ui�r��i�r�drdrN

= e−���u1,u2�, �2�

where � is the grand free energy. It can be proven �27� that
the functional � is strictly concave in u1 and u2 �if we op-
portunely restrict its domain of definition�. The equilibrium
number density of species i is given by

�i�r� � ��i�r�� = −
����u1,u2�

�ui�r�
. �3�

It follows that the following functional of ��i� and �ui�

�A��1,�2,u1,u2� � �
i=1

2 	 �i�r�ui�r�dr + ���u1,u2� , �4�

is also strictly concave in u1 and u2, so it admits a unique
maximum for ui= ūi, i=1,2, where the �ūi� can be deter-
mined univocally from Eq. �3� once the equilibrium densities
��i� are known.

We now set Ā��1 ,�2��A��1 ,�2 , ū1 , ū2�. Again one can
prove �27� that this Helmholtz free energy is a strictly con-
vex functional in �1 and �2.

Introduce the following “grand free energy functional” of
the densities

�����1,�2� � �Ā��1,�2� − �
i=1

2 	 �i�r�vi�r�dr , �5�

where �vi� are some given generalized potentials, indepen-
dent of the densities. Clearly only when vi= ūi, i=1,2, we
have ��=�, i.e., equilibrium.

Taking the first functional derivative of �� with respect to
the densities we find

������1,�2�
��i�r�

=
��Ā��1,�2�

��i�r�
− vi�r� = ūi�r� − vi�r� , �6�

where in the second equality Eqs. �3� and �4� where used. At
equilibrium we then have that the first functional derivatives

FANTONI, GAZZILLO, AND GIACOMETTI PHYSICAL REVIEW E 72, 011503 �2005�

011503-2



of �� vanish and �� attains its minimum value.
The second functional derivatives of �� with respect to

the densities at equilibrium are �27�


 �2�����1,�2�
��i�r1��� j�r2�



equil.

= 
 �ūi�r1�
�� j�r2�



equil.

=
�ij��r1 − r2�

�i�r1�

− cij�r1,r2� , �7�

where cij�r1 ,r2� are the partial direct correlation functions of
the system.

So a Taylor expansion, up to the second order terms,
yields the fluctuation of �� around the equilibrium caused by
small density fluctuations

��� = ����1 + ��1,�2 + ��2� − ����1,�2�

=
1

2�
	 	 �

i,j
��ij��r1 − r2�

�i�r1�

− cij�r1,r2����i�r1��� j�r2�dr1dr2. �8�

If the system is homogeneous and isotropic at equilibrium
�i.e., ūi�r�=�	i, i=1,2�, so that

�i�r� =
Ni

V
= �i, �9�

cij�r1,r2� = cij��r1 − r2�� , �10�

where V is the volume �assumed large enough�, then we can
rewrite the integral of Eq. �8�, which is a convolution, as a k
integral of a product of Fourier transforms. Replacing the k
integral ��2��−3
dk . . . � by a sum over discrete k values
�V−1�k . . . �, one obtains

��� =
1

2�

1

V�
k

�
i,j

��̄i
��k�Ãij�k���̄ j�k� , �11�

where ��̄i�k�=��̃i�k� /��i and the asterisk indicates complex
conjugation, having denoted with the tilde the Fourier trans-
form

f̃�k� � 	
V

f�r�eik·rdr , �12�

so that

Ãij�k� = �ij − ��i� jc̃ij�k� . �13�

Notice that, due to the symmetry of the direct correlation

functions under exchange of species indexes, the matrix Ã�k�
is symmetric.

The probability distribution for the density fluctuations
��i �at constant T, V, and �	i�� is proportional to e−���� �28�.
We therefore get for the mean values of the fluctuation prod-
ucts

���̄i
��k���̄ j�k�� = V�Ã−1�ij�k� = V��ij + ��i� jh̃ij�k�� ,

�14�

where the last equality exploits the Ornstein–Zernike �OZ�
equations between the partial total correlation functions hij
and the partial direct correlation functions.

Next define the molar fraction of species i to be xi
=�i /�, with �=�i�i being the total density of the mixture.
One usually introduces �7� two linear combinations of fluc-
tuations of partial densities, i.e., the fluctuation of total den-
sity, ��̃�k�, and the fluctuation of concentration of species 1,
�x̃�k�,

��̃�k� = ��̃1�k� + ��̃2�k� = ����x1��̄1�k� + �x2��̄2�k�� ,

�15�

�x̃�k� =
1

�2 ��2��̃1�k� − �1��̃2�k�� =�x1x2

�
��x2��̄1�k�

− �x1��̄2�k�� , �16�

so that, if ��̃1 and ��̃2 change in proportion to their respec-
tive mean concentration, then �x̃=0.

We also introduce

��̄�k� =
1
��

��̃�k� , �17�

�x̄�k� =� �

x1x2
�x̃�k� , �18�

so that, in terms of the following two column vectors

u�k� = ���̄1�k�
��̄2�k�

�, v�k� = ���̄�k�
�x̄�k�

� , �19�

Eqs. �15� and �16� can be written in compact notation as u
=Uv where

U = ��x1
�x2

�x2 − �x1
� , �20�

notice that U2=I, where I is the identity matrix.
We find then from Eq. �11��superscript T indicating the

transpose�

��� =
1

2�

1

V�
k

vT��k�M�k�v�k� , �21�

where M�k� is the following symmetric matrix:

M�k� = UÃ�k�U = �M�� M�x

Mx� Mxx
� , �22�

with

M�� = 1 − ��x1
2c̃11 + x2

2c̃22 + 2x1x2c̃12� , �23�

Mxx = 1 − �x1x2�c̃11 + c̃22 − 2c̃12� , �24�
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M�x = Mx� = ��x1x2�x2c̃22 − x1c̃11 − �x2 − x1�c̃12� . �25�

The elements of the M�0� matrix are related to thermody-
namic quantities �5�, as shown in the Appendix. In particular
the determinant of M is

det�M� = x1x2
��T

0�2

�TV
� �2G

�x1
2 �

T,P,N

, �26�

where �T is the isothermal compressibility, and �T
0 =� /� is

the isothermal compressibility of the ideal gas.
For the particular systems that we shall consider in the

following, it turns out that the matrix Ã can be written, using
the Wiener–Hopf factorization in terms of the Baxter factor

matrix Q̂ �11�

Ã�k� = Q̂T��k�Q̂�k� . �27�

Hence det�M�k��=det�Ã�k��= �det�Q̂�k���2�0 and

trace�M�k��=trace�Ã�k���0.
The inverse of M�k� yields the mean square fluctuations

of total density and concentration, i.e., the density-density
structure factor S���k�, the concentration-concentration struc-
ture factor Sxx�k�, and the cross term S�x�k� �7�

S���k� =
1

V
���̄��k���̄�k�� = �M−1����k� , �28�

Sxx�k� =
x1x2

V
��x̄��k��x̄�k�� = x1x2�M−1�xx�k� , �29�

S�x�k� =
�x1x2

V
���̄��k��x̄�k�� = �x1x2�M−1��x�k� . �30�

Now, since M�k� is a symmetric matrix, it can be diago-
nalized through an orthogonal change of basis and it will
have real eigenvalues

�±�k� =
tr�M�k�� ± ��tr�M�k���2 − 4 det�M�k��

2
, �31�

with �+�k���−�k��0. For the normalized eigenvectors we
find

z±�k� = �a±�k�
b±�k�

� , �32�

with

a±�k� = 1/�1 + �M���k� − �±�k�
M�x�k� �2

, �33�

b±�k� = − a±
M���k� − �±�k�

M�x�k�
. �34�

The transition matrix to the base formed by the eigenvec-
tors will be

Z�k� = �a+�k� a−�k�
b+�k� b−�k�

� , �35�

Eq. �21� can then be recast into the form

������1,��2� =
1

2�

1

V�
k

��+�k����̄+�k��2 + �−�k����̄−�k��2� ,

�36�

where ��̄± are the Fourier components of the vector for the
total density and concentration fluctuation in the eigenvector
base, namely

Z−1v = ���̄+

��̄−
� , �37�

or

��̄+�k� = a+�k���̄�k� + b+�k��x̄�k� , �38�

��̄−�k� = a−�k���̄�k� + b−�k��x̄�k� . �39�

B. Characterization of the instability

We wish to know which combination of density and con-
centration fluctuations, ���̄ ,�x̄� or ���̄+ ,��̄−�, yields the
smallest increase ��� of grand free energy. The border of a
stability region �spinodal line� will be determined by the
smaller eigenvalue �−�k� going to zero. It is important to
remark that the minimum eigenvalue will vanish if and only

if det�M�k��=�−�k��+�k�= �det�Q̂�k���2 vanishes. The spin-
odal equation thus corresponds to

�−�k� = 0 or det�Q̂�k�� = 0. �40�

For all k̄ vectors with k̄= �k̄� being a solution of the spin-

odal equation, we can calculate the related eigenvector z−�k̄�
and find, from Eq. �39�, one nonzero linear combination

��̄−�k̄� of density and concentration fluctuations for which

���=0. Thus z−�k̄�= �a−�k̄� ,b−�k̄��T characterizes the phase
transition uniquely. On defining the angle �see Fig. 1�

FIG. 1. Schematic representation of the two orthonormal vectors
z± defined in Eq. �32� and of the angle � defined in Eq. �41� when
�� �0,� /2�. When �� �−� /2 ,0� the angle shown in the figure
corresponds to ��� and �x̄ to −�x̄.
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� = arctan�a−

b−
�

k=k̄
= arctan� Q̂12�k̄��x1 − Q̂11�k̄��x2

Q̂12�k̄��x2 + Q̂11�k̄��x1

� ,

�41�

the instability will be predominantly of the demixing type
when � is close to 0 �i.e., only concentration fluctuations
occur� and predominantly of the condensation type when � is
close to ±� /2 �i.e., only density fluctuates at fixed concen-
tration�.

The same feature can be seen in real space. When �−�k̄�
=0 and �=0 �⇒a−=0, b+=0, and therefore ��̄+=a+��̄, ��̄−

=b−�x̄�, one can get ���=0 only if ��̄+�k̄�=0, which re-

quires ��̃�k̄�=0, i.e., the fluctuations that do not increase the
“grand free energy” can be expressed as

��1�r� =
1

V
�
k

�k�=k̄

��1�k�e−ik·r, �42�

��2�r� = − ��1�r� . �43�

On the other hand, when �−�k̄�=0 and �= ±� /2 �⇒��̄+

=b+�x̄ ,��̄−=a−��̄�, ��̄+�k̄�=0 now requires �x̃�k̄�=0, which
corresponds to

��2�r� = +
�2

�1
��1�r� . �44�

Equation �42� yields oscillating partial density fluctuations
for species 1 on the spinodal line, whereas Eqs. �43� and �44�
represent the two different behaviors of the species 2 in cor-
respondence to the two extreme values of � �0 and ±� /2,
respectively�. For �=0, the fluctuations of species 2 must be
in opposition of phase compared to those of species 1, �see
Eq. �43��, and this can be clearly interpreted as related to
spatial demixing. In the opposite case ��= ±� /2�, Eq. �44�
means that an increase of species 1 in some region drives an
increase of species 2 in the same region, a clear indication of
a condensation type of instability. When � varies from zero
to ±� /2 the allowed fluctuations will continuously vary from
the pure demixing to the pure condensation type.

For a class of approximations �closures� having the partial
direct correlation functions vanishing beyond a finite range,

it was proven in �11� that Q̂�k� is nonsingular for any k�0,

so we can limit our search for the zeroes of the minimum
eigenvalue to the case k=0. Moreover, since

limk→
 det�Q̂�k��=1 and det�Q̂�k�� is a continuous function

of k, we must also have det�Q̂�k=0�� non-negative, other-

wise det�Q̂�k�� would vanish for some finite k. We can use
this last condition to determine which regions of the phase
diagram are unstable. We cannot in fact gather this informa-

tion by just looking at the matrix Ã, which is always positive
definite when nonsingular. In the following, whenever we
omit the dependence from the wave vector k, we shall refer
to the case k=0.

III. THE BINARY STICKY HARD SPHERE FLUID

We consider the SHS mixture described in the introduc-
tion by the following square-well interaction potential be-
tween a sphere of species i and one of species j �8,9,13,14�

��ij�r� = �
+ 
 0 � r � �ij ,

− ln� 1

12�ij

Rij

Rij − �ij
� �ij � r � Rij ,

0 r � Rij ,
� �45�

where �=1/ �kBT� �kB being Boltzmann constant and T the
temperature�, �ij = ��i+� j� /2 ��i being the diameter of a
sphere of species i�, Rij −�ij denotes the well width, and the
dimensionless parameter

1

�ij
=

�ij

�
=

�ij

�* � 0, �46�

measures the strength of surface adhesiveness or “stickiness”
between particles of species i and j. In �46�, � is an unspeci-
fied increasing function of T, and we introduced the dimen-
sionless quantities �ij =�ij /�11 and �*=� /�11. The next step
which defines the SHS model consists in taking the sticky
limit �Rij�→ ��ij�. Notice that the logarithm in the initial
square-well potential �45� is chosen so to have a simple ex-
pression for the Boltzmann factor, which reduces to a com-
bination of an Heaviside step function and a Dirac delta
function in the sticky limit.

Within a class of mixed closures for which the partial
direct correlation functions cij�r� after the sticky limit vanish
beyond �ij �generalized PY �GPY� approximation �21��, the
model can be analytically solved for the Baxter factor corre-
lation function

qij�r� = �1

2
ai�r − �ij�2 + �bi + ai�ij��r − �ij� + Kij , Lij = ��i − � j�/2 � r � �ij ,

0, elsewhere,
� �47�
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ai =
1

�
+

3�2�i

�2 −
12�i

�
, bi = � 1

�
− ai��i

2
, �48�

�n =
�

6 �
i

�i�i
n, �i =

�

6 �
m

�m�mKim, � = 1 − �3.

�49�

The Baxter factor matrix Q̂�k� first introduced in Eq. �27�
is related to Baxter factor correlation function through

Q̂ij�k� = �ij − 2���i� jq̂ij�k� , �50�

where q̂ij�k� is the one-dimensional Fourier transform of
qij�r�. It can be expressed in terms of spherical Bessel func-
tions of the zeroth and first order and its explicit expression
can be found in Eq. �27� of Ref. �20�, and will not be repro-
duced here.

The symmetric matrix Kij is given by

Kij =
�ij

2

12�ij
ȳij , �51�

where ȳij =yij��ij
+� are the contact values of the partial cavity

functions. For this kind of system a more natural parameter
to use in place of the total density �=�i�i is the total packing
fraction �=�3.

In the modified mean spherical approximation �cij�r�
= f ij�r� when r��ij, where f ij�r�=exp�−��ij�r��−1 are the
Mayer functions� one can show �21� that �29�

ȳij = 1 for all i and j , �52�

In the Percus–Yevick approximation �cij�r�= f ij�r�yij�r��
one can show that the ȳij have to satisfy the following set of
coupled quadratic equations �13�

ȳij�ij = ai�ij + bi + 2��
k

�k

�kj
2

12�kj
ȳkjqki�Lki� . �53�

It is worth stressing that the above expressions are valid
for both the mMSA and the PY closures, provided that the
correct values of ȳij are inserted into the matrix Kij given in
Eq. �51� �20,26�. All the results gathered so far in this section
are valid for a generic p-component SHS mixture. In the rest
of the work we will specialize to two-component �p=2� mix-

tures. For a binary mixture the determinant of Q̂�0� can be
reduced to the following simple expression �30�

det�Q̂�0�� =
1 + 2�

�1 − ��2 −
�1�11

BT + �2�22
BT

�1 − ��2 −
�1�2

�1 − ��3 �3��11
BT

+ �22
BT − 2�12

BT� − �11
BT�22

BT + ��12
BT�2� , �54�

where

�i =
�

6
�i�i

3, �55�

�ij =
ȳij

�ij
, �56�

�ij
BT = �1 − ���ij

�ij
2

�i� j
. �57�

Our task is the determination of the spinodal line and of
the nature of the instability. These can be expressed respec-
tively by the reduced temperature �*= f����1

3 ,x1 ,� , ��ij�� and
the angle �= f����1

3 ,x1 ,� , ��ij��, where �=�2 /�1. Sometimes
it also proves convenient to use another set of independent
variables, namely � ,x1 ,� , ��ij�.

We anticipate that, while f� will in general depend on the
particular chosen closure, f� need not mirror this feature. An
example is the case studied in Section V, where two �ij are

zero and �ī j̄ �0. Then �ij =0 for i� ī or j� j̄ and the spinodal
equation

�−�0� = 0 or det�Q̂�0�� = 0. �58�

is sufficient for determining the third �, which turns out to be
a function �ī j̄�� ,x1 ,��. independent from the particular clo-
sure within the class we are considering. Since in each ma-

trix element of Q̂ the quantities ȳij and �ij appear only in the
ratios �ij it follows that the angle � �see Eq. �41�� will also
be independent of the particular closure.

In the case of a general binary mixture �with two or three
nonvanishing �ij� we expect a dependence of the angle from
the closure, even if this point would deserve further investi-
gation.

IV. THE SYMMETRIC BINARY MIXTURE

The PY approximation leads, even in the simple binary
case, to the solution of two coupled quartic equations. We
then start with a simpler task, akin to the one already dis-
cussed by Chen and Forstmann �5� for a different potential,
of finding the spinodal line and angle � predicted by the
mMSA and PY for the symmetric binary mixture. In this case
x1=x2=1/2, �1=�2=�, and �11=�22. By symmetry we must
have c̃11= c̃22 and from Eq. �25� it follows that M is diagonal,
the cross term M�x being identically zero and

�− = min�M��,Mxx� . �59�

Therefore the symmetric mixture can only have either pure
condensation ��= ±� /2� or pure demixing ��=0� instabili-
ties.

Moreover for the symmetric mixture we have from Eqs.
�28�–�30�

S�� =
1

M��

, �60�

Sxx =
1

4Mxx
, �61�

S�x = 0. �62�

We see then that on a pure condensation instability

S���0�→
 or h̃11�0�+ h̃12�0�→
, whereas on a pure demix-

ing instability Sxx�0�→
 or h̃11�0�− h̃12�0�→
, and each
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type of instability shows a distinct form of long-range behav-
ior in the correlation functions.

A. Symmetric mixture in the mMSA

Let us first consider the symmetric mixture within the
mMSA. The spinodal line will be of pure condensation when
M��=0, that is

�* = ��
* = �1 + �12�

1

2
�

1 − �

1 + 2�
, �63�

whose maximum in the ��* ,�� plane occurs at �=�c
mMSA

= ��3−1� /2=0.3660. . . �independently of �12�. On the other
hand the spinodal will be a line of pure demixing when
Mxx=0 which has as solutionn

�* = �x
* = �1 − �12�

1
2� . �64�

Note that the allowed packing fractions are the ones
smaller than the close packed packing fraction �0=��2/6
=0.7404. . ..

For the determinant of Q̂�0� we find from Eq. �54�

det�Q̂�0�� =
�� − ����� − �x�

�2

1 + 2�

�1 − ��2 , �65�

so that the system is unstable when � lies between the two
roots �� and �x, at a given packing fraction.

While the condensation line is always present, the exis-
tence of a demixing line depends upon the value of �12, as
expected. When �12�1 the demixing line �*=�x

* lies below
the � axis, and hence, the spinodal in the phase diagram
��* ,�� is the curve �*=��

* �see Fig. 2�, with the instability
being of pure condensation at all densities. Notice that this
would be the case for Lorentz–Berthelot mixtures for which
we have �12���11�22=�11, which corresponds to �12=1, that
is the one-component case.

When �12�1 the two roots �*=��
* and �*=�x

* intercept at a
point �31� �see Fig. 3� having packing fraction

� = ��x =
2�12

3 − �12
� 1, �66�

so the instability is of pure condensation for ����x and of
pure demixing for ����x.

B. Symmetric mixture in the PY

In the PY approximation we first need to determine the
cavity functions at contact. Equation �53� for the binary sym-
metric mixture can be recast into the following form

�11�11 −
1

2
�� 1

12
�11

2 −
1

�
�11� = ȳ11

HS +
1

2
�� 1

12
�12

2 −
1

�
�12� ,

�67�

�12�12�1 +
1

�12
� �

2�
−

1

12
��11�� = ȳ12

HS −
�

2�
�11, �68�

where

ȳ11
HS = ȳ12

HS = ȳHS =
2 + �

2�1 − ��2 , �69�

is the HS expression for the cavity functions at contact. Sub-
stitution of Eq. �68� into Eq. �67� leads to a quartic equation
for �11. The solution for the cavity functions at contact can
then be written as

ȳ11

�11
= R , �70�

ȳ12

�12
=

ȳHS −
�

2�
R

�12�1 +
1

�12
� �

2�
−

1

12
�R�� , �71�

where R is a solution of the quartic equation.
In order to find the physically meaningful zeroes of M��

and Mxx we proceed as follows. First we compute all the four
roots Ri, i=a ,b ,c ,d of the quartic equation and, hence,
�ȳ11�i= �ȳ11�i��* ,� ,�12�, and �ȳ12�i= �ȳ12�i��* ,� ,�12� are the
cavity functions at contact obtained using the root Ri, while
�M���i and �Mxx�i are the diagonal elements of M obtained
using for the cavity functions at contact �ȳ11�i and �ȳ12�i. As
it turns out, only two roots Ri will give physically admissible
cavity functions at contact. Then we compute the zeroes of

FIG. 2. Spinodal line �continuous curve� for the symmetric mix-
ture in the mMSA with �12=2. The kind of instability is of pure
condensation along the whole spinodal.

FIG. 3. Spinodal line �continuous curve� for the symmetric mix-
ture in the mMSA with �12=2/3. In this case the instability is of
pure condensation for ����x along �*=��

* and of pure demixing
for ����x along �*=�x

*.
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�M���i, denoted as �*= ���
*�i�� ,�12�, and of �Mxx�i, denoted as

�*= ��x
*�i�� ,�12�. Then physical zeroes are then selected by

the requirement that

lim
�12→1

�ȳ11�i����
*�i,�,�12� = lim

�12→1
�ȳ12�i����

*�i,�,�12�

= ȳ+
oc����

*�i,�� � = �,x , �72�

where ȳ+
oc is the physical cavity function at contact for the

one-component system

ȳ±
oc��,�� =

ȳHS

1

2
�1 +

�

�

1

�
±��1 +

�

�

1

�
�2

−
�

3
ȳHS 1

�2� .

�73�

Using constraint �72� we find that the correct physical solu-
tion is R=Rb at high �, the only one such that

lim
�→


�ȳ11�b = lim
�→


�ȳ12�b = ȳHS, �74�

lim
�→0

�ȳ11�b = lim
�→0

�ȳ12�b = 1, �75�

while at small � the solution to use is R=Ra such that con-
dition �72� is satisfied. As for the one-component system
there is an interval �0,�e� where there are no physical zeroes.
For the one-component case the spinodal

�* = �oc
* =

1 + 4� − 14�2

12�1 − ���1 + 2��
, �76�

exists only if ���e where �e=�c
PY = �3�2−4� /2=0.1213. . .

and �c
PY is the PY critical packing fraction. For the binary

symmetric mixture, numerical results strongly suggest the
coincidence of �e with the critical packing fraction �see Figs.
4 and 5� but we have not succeeded in proving it �nor in
determining an expression for it�. The unphysical continua-
tion of the pure condensation spinodal in the range �0,�e� is
given by the root R=Rc such that

lim
�12→1

�ȳ11�c����
*�c,�,�12� = lim

�12→1
�ȳ12�c����

*�c,�,�12�

= ȳ−
oc����

*�c,�� � = �,x . �77�

Notice that this solution would also give, in the same range
of �, an unphysical spinodal of pure demixing whenever
�12�1.

The zeroes �*= ���
*�i and �*= ��x

*�i are shown in Fig. 4 for
�12=2, and for �12=2/3 �the same conditions as in Figs. 2
and 3, respectively�. As it happened in the mMSA, for
�12�1 there is only a spinodal of pure condensation, while
for �12�1 a spinodal of pure demixing appears at high �, as
expected on physical grounds. However, unlike the mMSA
case, the pure demixing and the pure condensation lines do
not merge. Also the shapes and numerical values of the PY
spinodals significantly differ from the mMSA ones. In Fig. 5
we select �12 slightly above 1 and slightly below 1 in order
to check the correct convergence towards the one-component
case. At �12=1/1.1 the line of pure demixing appears in the
physically non-accessible region ���0.

FIG. 4. Spinodal line for the symmetric mixture in the PY ap-
proximation with �12=2 in the top panel and with �12=2/3 in the
bottom panel. At �12=2 the instability is of pure condensation along
�*= ���

*�i, i=a ,b and of pure demixing along �*= ��x
*�i, i=a ,b. The

zeroes labeled c are unphysical. The gaps between the curves �*

= ���
*�i are numerical artifacts. At �12=2/3 there is the appearance of

a pure demixing spinodal at high � which does not cross the pure
condensation one. For reference we also plot in both panels the
spinodal of the one component system �oc

* �see Eq. �76�� which is
physical only for ���c= �3�2−4� /2=0.1213. . ..

FIG. 5. Same as Fig. 4 with �12=1/0.9 in the top panel and
�12=1/1.1 in the bottom panel. In this last case the expected line of
pure demixing would start at ���0=0.7404. . . in the unphysical
range of densities.

FANTONI, GAZZILLO, AND GIACOMETTI PHYSICAL REVIEW E 72, 011503 �2005�

011503-8



V. TWO PARADIGMATIC SYSTEMS

The next two mixtures can be regarded as paradigmatic
examples of a system where one expects to have a predomi-
nant condensation or predominant demixing type of thermo-
dynamic instability. The thermodynamics of these mixtures
have been previously investigated by Barboy and Tenne �14�
within the PY approximation. In the following we shall ex-
tend this analysis of the instability type both within mMSA
and PY closures. The two systems are defined as follows:
�system A� �12�0, �11=�22=0; �system B� �11�0, �12=�22
=0. System A corresponds to a fluid where the HS potential
acts between like particles and the SHS potential between
unlike particles, while system B corresponds to HS �species
2� in a SHS fluid �species 1�. Alternatively, on regarding the
large spheres as the “solute” and the small spheres as the
“solvent,” systems A and B can be reckoned as a schematic
model mimicking a “good” and a “poor” solvent, respec-
tively �23�.

For system A we have �11
BT=�22

BT=0, so Eq. �53� reduces to
a linear equation for ȳ12 with the following solution �which
corrects Eq. �64� of Barboy and Tenne�

ȳ12 =
ȳ12

HS

1 +
�2

2�

�12

�12

, �78�

where

ȳ12
HS =

1

�
+

3

2

�2

�2

�1�2

�12
, �79�

is the HS expression for the contact cavity function.
For system B we have �12

BT=�22
BT=0, so Eq. �53� reduces to

a quadratic equation for ȳ11. The only solution which reduces
to the HS expression for �11→
, is �identical to Eq. �57� of
Barboy and Tenne�

ȳ11 =
ȳ11

HS

1

2
�1 +

�1

�

1

�11
+��1 +

�1

�

1

�11
�2

−
�1

3
ȳ11

HS 1

�11
2 � ,

�80�

where

ȳ11
HS =

1

�
+

3

2

�2

�2�1, �81�

is the HS expression for the contact cavity function. The
instability lines are again given by Eq. �58�.

Let �ij�� ,x1 ,�� be the solution of the spinodal Eq. �58�
for the only nonvanishing �ij. As the cavity functions must
be positive, the spinodal exists only for those values of
� ,x ,� for which �ij �0. It may also happen �and it does in
the PY case� that the spinodal equation

�ij
�closure� =

ȳij
�closure���ij,�,x1,��

�ij
= �ij��,x1,�� , �82�

upon choosing the correct physical solution for ȳij
�closure�, does

not have any real positive solutions for �, at certain values of
� ,x ,�. For these values the spinodal predicted by the par-
ticular closure has loss of solution and the predicted value
for the angle � has clearly no physical meaning.

A. Instabilities for system A

On setting

�A
BT = 3 +��3 +

�

�1
��3 +

�

�2
� , �83�

for system A the solution of Eq. �58� within the mMSA ap-
proximation is

�12
mMSA =

�

�A
BT

�12
2

�1�2
, �84�

while in the PY is

�12
PY = ȳ12

HS�12
mMSA −

�2�12

2�
, �85�

and, in the limit of high dilution while keeping �12
mMSA con-

stant, one finds �12
PY→�12

mMSA, as expected in view of the fact
that the PY contact cavity functions converge towards the
mMSA contact cavity functions.

In order to exist, the instability line must clearly lie on the
�12�0 side of the ��12,�� plane. It is easy to see that, while


d�12
mMSA

d�



�=0
� 0 for any choice of x1 and � , �86�

we have that ��1��2�


d�12
PY

d�



�=0
� 0 only when

�2

�1 + �2
� x1 �

�2
3

�1
3 + �2

3 .

�87�

So in the PY approximation the thermodynamic instability
disappears as x1 falls outside the range indicated in Eq. �87�.

In Figs. 6 and 7 we depict the mMSA and PY spinodals,
respectively, at a given value of � and three different values
of x1 for which the PY spinodal does exist. One clearly sees
that conditions �86� and �87� result in a large scale difference
between the two plots.

FIG. 6. For system A the mMSA spinodal �see Eq. �84�� for �
=2 and three different values of x1.
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As regards the angle �, we know, from the discussion at
the end of Sec. III, that the angles predicted by the two
approximations are the same, and from Fig. 8 we see that the
kind of instability is mainly of condensation type in accord
with what we expected from the outset. Two exact limits are
worth mentioning. First, the infinite dilute limit

lim
�→0

� = arctan� �x2/x1 + ��2/�1

��2x2/��1x1� − 1
� , �88�

provides an analytical check of the numerical results reported
in Fig. 8. Second, when �2��1 one obtains

lim
�→


� = arctan �x1/x2. �89�

This result bears an interesting physical interpretation. As the
fraction x2 of large particles decreases, the angle � tends to
� /2, that is to a condensation instability. This is in striking
contrast with what one would expect for HS on the basis of
an entropic depletion mechanism �32,33�, which would tend
to favor demixing in a system with a small number of large
spheres. The reason for this can be traced back to the fact
that in system A unlike particles have attractive interactions,
thus preventing smaller particles to slip out from the intersti-
tial region between two larger spheres. This interpretation

also holds true if one regards system A as a good solvent.

B. Instabilities for system B

Denoting

�B
BT =

�1 + 2���1 − ��
�1�1 − �� + 3�1�2

, �90�

for system B the solution of Eq. �58� within the mMSA is

�11
mMSA =

�

�B
BT , �91�

while in the PY approximation is

�11
PY = ȳ11

HS�11
mMSA +

�1

12�11
mMSA −

�1

�
, �92�

for

�11
PY �

�1

�
��B

BT

6
− 1� . �93�

In view of the above constraint, there is an interval �
� �0,�e� where no physical spinodal exists. We stress that
only for the one-component SHS limit �x2=0� one finds that
�e=�c, with �c being the critical packing fraction, whereas
in the more general case, studied here, this occurrence is no
longer true, as shown in Fig. 10. Once again �11

PY, as given in
Eq. �92�, reduces to �11

mMSA, in the limit of high dilution, with
�11

mMSA kept constant. However, unlike �11
mMSA, which is always

a concave function of � for any choice of x1 and �, �11
PY, it

may display a van der Waals loop �see Fig. 10� as a function
of �. The shape of the spinodal is strongly dependent on the
content of the HS component in the mixture. When x1� x̄1
�x̄1�0.8681. . . when �=1� the spinodal is a monotonously
increasing function of �, while for x1� x̄1 a loop appears.
This point has already been emphasized by Barboy and
Tenne �14�.

As previously remarked, even in this case both mMSA
and PY results for � coincide in the respective range of ex-
istence. In Fig. 11 we see that the instability for system B
tends to pure demixing for �=1 and large �. As � is in-
creased, one finds the same limit �89� as for system A. Once
again the osmotic depletion mechanism fails because of the
presence of stickiness this time among the small particles. As
a further support to this interpretation, one also finds in the
opposite limit

lim
�→0

� = arctan� x1 − �

�x1x2
� . �94�

In this case, when x1=� the instability of the system is of a
pure demixing type, so the solvent �particles of species 2� is
a poor one. This is because the smaller particles �species 2�
interact as HS both with larger spheres �species 1� and with
each other. Hence, not only the depletion mechanism is not
opposed in the present case, but, quite on the contrary, is
favored by the attraction occurring between two big spheres
�see Fig. 9�. This results into the possibility for the existence
of a demixing instability even if the HS binary mixture,

FIG. 7. For system A the PY spinodal �see Eq. �85�� under the
same conditions considered in Fig. 6.

FIG. 8. Behavior of the angle � of Eq. �41� predicted by the
mMSA and PY for system A when x1=0.75, �=2. In this case the
PY spinodal has no solutions when ��0.03227. . .. In the inset we
show the region of � were the PY spinodal exists. Note that here
and in the following cos � rather than the angle � itself is depicted
for visual convenience.
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within the closures considered here, does not have any insta-
bility �see Eq. �98��. One can also show that

lim
�→0

�mMSA = arctan �x1/x2, �95�

where �mMSA is the angle predicted by the mMSA, whose
spinodal does not have loss of solution at small �, or, upon
using �1 ,�2 ,y as independent variables, lim�1→0�mMSA=0.

Before closing this section, a word of caution should be
given on the aforementioned interpretations. In order to have
a clear and quantitative understanding of the depletion
mechanism discussed in this section �for both systems A and
B�, the depletion potential, that is the effective potential
among the large spheres mediated by the presence of the
small ones, should be computed. Hence, the aforementioned
scenarios should only be considered as a plausible possibility
rather than a definite statement.

VI. FIVE BINARY MIXTURES TREATED WITH MMSA

As a final point it is instructive to consider a more general
example. To this aim, it proves convenient to relate the ad-
hesion strengths �ij to the particle sizes ��i�. Our past expe-
rience �26� suggests to consider five different cases, obtained
setting �ij /�0=Fij

	��1 ,�2� for 	=1, 2, 3, 4, and 5. The func-
tions F	 are selected as follows �26�

�ij

�0
=�

���2/�ij
2 case I,

�i� j/�ij
2 case II,

��2�/�ij
2 case III,

1 case IV,

���/�ij case V,
� �96�

where �F���ixiFi. A critical justification leading to the
above choice can be found in Ref. �26�. Note that since for
all five cases the �ij are homogeneous functions of order zero
in the diameters ��i�, the corresponding mixtures are invari-
ant under a transformation where V→�V and all �i→��i
with � a scale factor �34�.

We have calculated the angle � defined in Eq. �41� on the
spinodal �Eq. �58�� for all the cases listed in �96� within the
mMSA closure. The angle � turns out to be the same for
cases I and III. The results are shown in Figs. 12 and 13 for
x1=1/2 and two different values of �. We have only consid-
ered packing fractions ���m=��2/6, where �m is the
maximum packing fraction for a “completely demixed” HS
mixture �i.e., the packing fraction of a mixture where the
spheres of species 1 are in a close packed configuration oc-
cupying a volume V1 and the spheres of species 2 are in a
closed packed configuration occupying a volume V2 such
that V2�V1=0�. It gives a lower bound to the true maximum
packing fraction.

In cases I and III we have pure condensation as �→0.
Case V display a pure condensation point at small but non-
zero values of �. In case II we find a pure demixing point at
high �, for sufficiently large � in the same region where in
case IV we have a pure condensation point. The packing
fraction of pure demixing for case II can be easily calculated
to be

� =
�����3�

��4�
, �97�

which turns out to be very close, albeit in general not coin-
cident, with the packing fraction at which we find pure con-
densation in case IV.

We remark that �both for mMSA and PY� the presence of
an instability curve for the SHS model is entirely due to the
stickiness, since in the HS limit ��→
� we have

lim
�→


det�Q̂�0�� =
1 + 2�

�1 − ��2 , �98�

which is always a positive quantity. Equation �98� can be
derived from Eq. �54� by noticing that the contact values of
the partial cavity functions ȳij must remain finite as �→
.
So the above statement is actually valid for any closure in
which the partial direct correlation functions vanish beyond
�ij. In particular it is valid for the mMSA and the PY �35�
approximations. For other, thermodynamically more consis-
tent closures, the statement is no longer true since phase
separation has been observed for highly asymmetric HS bi-
nary mixtures �36�.

VII. CONCLUSIONS

In this work we have applied the method devised by Chen
and Forstmann �5� to characterize the kind of thermody-
namic instability to a number of carefully selected SHS bi-
nary systems. The crucial quantity turns out to be the Chen
and Forstmann angle �, see Eq. �41�, on the spinodal: when
� is close to 0 the instability is of the pure demixing type,
whereas a value close to ±� /2 indicates a pure condensation
instability.

The presence of adhesion between the spheres results in
the existence of thermodynamic instabilities for the SHS
model when treated within closures having the direct corre-
lation functions vanishing beyond the hard core ranges,
whereas it is known that the HS mixture within the same

FIG. 9. In system B, when we have a small number of large
particles of species 1, the demixing instability �see Eq. �94�� should
be favored by the osmotic depletion mechanism, since the small
spheres interact through a HS potential both among themselves and
with the big spheres.
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approximations do not show any instability �see Eq. �98��.
We have first considered the symmetric binary mixture in

the mMSA �see Sec. IV A� and in the PY approximation �see
Sec. IV B�. This latter case was already considered by Chen
and Forstmann for a different potential. We have found that
when �11��12 the instability is of pure condensation along
the whole spinodal �see Fig. 2 and Eq. �63� for the mMSA,
and Figs. 4 and 5 for the PY�, while when �11��12 a pure
demixing spinodal appears at large packing fractions �see
Fig. 3 and Eqs. �63� and �64� for the mMSA, and Figs. 4 and
5 for the PY�, all within their respective limits of validity.
This general behavior appears to be characteristic of sym-
metric binary mixtures, in the sense that it is observed in
systems with pair potentials more “complex” than the SHS
potential �hard spheres with Yukawa tails �37�, square well
�31�, Lennard–Jones �38�, etc.� which do not admit analytic
solutions. The condensation and demixing lines are found to
meet at a point in the mMSA, whereas they do not merge
within the PY approximation.

Other two interesting examples can be treated in detail
from an analytical point of view as discussed in Sec. V. We
compared the spinodals and the angles � predicted by
mMSA with those predicted by PY for a binary mixture with
�12�0 and �11=�22=0 �system A� and one with �11�0 and
�12=�22=0 �system B�. Being the SHS interaction attractive,
one should expect system A to present mainly condensation
instabilities and system B mainly demixing instabilities.
These choices for the �ij reduce Eq. �53� for the contact
values of the cavity functions in the PY approximation at
most to a quadratic one, simplifying calculations consider-
ably. We find that the spinodals predicted by the two approxi-
mations are very different both quantitatively and qualita-
tively �see Figs. 6 and 7, and Eqs. �84� and �85� for system
A, and Fig. 10 and Eqs. �91� and �92� for system B�. None-
theless the corresponding angles � do not depend on the
closure, when this is chosen within the GPY large class con-
taining mMSA and PY as particular cases. In agreement with
our expectations, we find that the instabilities of system A are
predominantly of the condensation type �see Fig. 8�, while
the ones of system B of the demixing type when ��1 �see
Fig. 11�. For system B when we have a small number of

large spheres of species 1, the demixing instability may be
favored by both the osmotic depletion mechanism �32� and
the stickiness between the large spheres �see Fig. 9�.

In the more general case, the pair potential depends in
general on three parameters: the ratio of the sphere diameters
of the two species, �=�2 /�1, and two dimensionless param-
eters which measure the relative strength of surface adhe-
siveness, �22=�22/�11 and �12=�12/�11. A reduction occurs
when the latters are connected to the former through plau-
sible relationships �ij =�0Fij��1 ,�2�. Following our previous
work �26�, we have considered five possible cases �see Sec.
IV and Eq. �96��. We find that four of the five cases exhibit
very distinct types of instabilities �see Figs. 12 and 13�:
Cases I and III have the same angle �, with pure condensa-
tion at �→0 and predominant demixing for ��0; case V
has a pure condensation instability point at low packing frac-

FIG. 10. For system B the spinodals predicted by mMSA �thick
lines, see Eq. �91�� and the ones predicted by PY �thin lines, see Eq.
�92�� for �=1 at three different values of x1. The physically mean-
ingful PY spinodals are those lying above the “existence” lines in
accord with condition �93�.

FIG. 11. For system B behavior of the angle � of Eq. �41�
predicted by mMSA and PY for x1=0.91 and �=1 in the bottom
panel �in this case the PY spinodal has loss of solution for ���e

�0.1248. . .� and �=2 in the top panel �in this case the PY spinodal
has loss of solution for ���e�0.1614. . .�.

FIG. 12. Behavior of the angle � of Eq. �41� for cases I, II, III,
IV, and V when x1=1/2 and �=3/2.
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tions; case IV has a pure condensation instability point at
high packing fractions provided that � is sufficiently large,
whereas case II has a pure demixing instability point under
the same conditions.

It would be desirable to extend the present study in two
respects. First it would be interesting to consider different,
more sophisticated, closures, in view of our results on the
two examples �denoted as systems A and B� where the angle
� is shown to be independent of the particular closure within
the GPY class, in spite of a large difference in the corre-
sponding instability curves. Second, it would be nice to test
the analytical predictions given in this work against numeri-
cal simulations, with a particular attention to what concerns
the depletion mechanism. We plan to address both issues in a
future work.
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APPENDIX: THERMODYNAMIC RELATIONS FOR THE
ELEMENTS OF THE M MATRIX

In this appendix we gather together some well known
relationships between thermodynamic quantities and the re-
sults obtained in the main text. The Ashcroft–Langreth par-
tial structure factors �39� of an homogeneous and isotropic
p-component mixture are related to the partial total correla-
tion functions as

Sij�k� = �ij + ��xixjh̃ij�k� , �A1�

where xi= �Ni� / �N� is the molar fraction of particles of spe-
cies i and � the total density of the mixture. From the nor-
malization condition for the partial pair distribution functions
of the grand canonical ensemble follows

Sij�0� =�xi

xj
� �NiNj� − �Ni��Nj�

�Ni�
� , �A2�

The matrix Ã, defined in Eq. �13� of the text, is related to the
structure factors by

Sij�k� = �Ã−1�ij�k� . �A3�

We now relate composition fluctuations to thermody-
namic quantities. The grand partition function is

e−�� = �
N1,. . .,Np=0




e���i=1
p Ni	i−A�T,V,�Ni���, �A4�

where A�T ,V , �Ni�� is the Helmholtz free energy of a mem-
ber of the grand canonical ensemble with given number of
particles of each species, and the chemical potentials �	i� are
to be determined from the average number of particles of
each species

�Ni� = �
N1,. . .,Np=0




Nie
���+�i=1

p Ni	i−A�T,V,�Ni���. �A5�

We immediately find

� ��

�	i
�

T,V,�	ī�
= − �Ni� , �A6�

and

1

�
� �Ni

�	 j
�

T,V,�	 j̄�
= �Ni�� ��

�	 j
�

T,V,�	 j̄�
+ �NiNj�

= �NiNj� − �Ni��Nj� = �xixjSij�0��N� ,

�A7�

where the index ī denotes all species different from i. Since
the thermodynamic derivatives ��Ni /�	 j�T,V,�	 j̄�

are the ele-

ments of the inverse of the matrix whose elements are
��	i /�Nj�T,V,�Nj̄�

we can invert the above relation to read

�� �	i

�Nj
�

T,V,�Nj̄�
=

1

�N��xixj

�S−1�ij�0� =
1

V��xixj

Ãij�0� ,

�A8�

where we indicated with S the matrix whose elements are the
partial structure factors.

We now define the partial volumes as

vi = � �V

�Ni
�

T,P,�Nī�
. �A9�

Since the total volume is an homogeneous function of order
one in the extensive variables we must have

�
i=1

p

Nivi = V , �A10�

since the Gibbs free energy G=G�T , P , �Ni�� is an homoge-
neous function of order one in the extensive variables we
must have

FIG. 13. Behavior of the angle � of Eq. �41� for cases I, II, III,
IV, and V when x1=1/2 and �=5.
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�
i=1

p

Ni	i = G , �A11�

so in particular the chemical potentials will be homogeneous
functions of order zero in the variables �Ni�, we can then
write 	i=	i�T , P , ��Ni��� where with the symbol ��Ni�� we
mean that the variables �Ni� can appear only as ratios. We
also find

� �	i

�Nj
�

T,V,�Nj̄�
= � �	i

�Nj
�

T,P,��Nj̄��
+

viv j

V�T
, �A12�

where �T is the isothermal compressibility

�T = −
1

V
� �V

�P
�

T,�Ni�
. �A13�

Notice also that taking the partial derivative of Eq. �A11�
with respect to Nj at constant T, P, and we find the following
Gibbs–Duhem relation

�
i=1

p

Ni� �	i

�Nj
�

T,P,��Nj̄��
= 0. �A14�

We want now find thermodynamic relations for the matrix
elements M��, Mxx, and M�x of the binary mixture. We will
do the calculation explicitly for M�� and quote the final result
for the other two elements. So from Eq. �23� we find for M��

M�� = x1�1 − �x1c̃11� + x2�1 − �x2c̃22� − �x1x2�c̃12 + c̃21�

= V�� �
i,j=1

2

xixj� �	i

�Nj
�

T,V,�Nj̄�
=

��

�T
�
i,j=1

2

xixjviv j =
�T

0

�T
,

�A15�

where �T
0 =� /� is the isothermal compressibility of the ideal

gas, in the second equality Eqs. �13� and �A8� were used, in
the third equality we used Eqs. �A12� and �A14� and in the
last equality Eq. �A10�. For M�x we find

M�x = �x1x2�
�T

0

�T
, �A16�

where

� � ��v1 − v2� =
1

V
� �V

�x1
�

T,P,N
, �A17�

and for Mxx

Mxx = x1x2�2�T
0

�T
+ x1x2

�T
0

V
� �2G

�x1
2 �

T,P,N

. �A18�

The determinant factorizes

det�M� = det�Ã� = �det�Q̂��2 = x1x2
��T

0�2

�TV
� �2G

�x1
2 �

T,P,N

,

thus yielding Eq. �26� in the main text.
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